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Abatract

Results of recent calculations for the triton using realistic
potentials with strong tensor forces are reviewed, with an emphasis on
progress made using the many different calculational schemss. Several test

problems are suggested.

Introduction

Many different calculational techniques have been used to suvlve the
Schrodinge= equation for the triton. The most common [l-4] of these
techniques historically, and the oldest, is the Raleigh -Ritz variational
prncedure., This august nethod predates quantum mechanics, and still
provides an effective procedure for solving the Schrodinger equation for
the few-nucleon problem. In order to implement this schere one only needs

to conatruct a trial wavefunction, ¥ and form Eu - <¢T|H|¢T>, where H is

the Hamiltonlan {i guestior. The quInthy Eu i{s an upper bound for the
exact energy, E: !u 2 B If the differance of the trial wave ruaction
from the exaot wave function, ¥, can be characterized by a (small)
parametsel « (wT ~ ¢ + order (¢)] chen Eu - B+ ordor(«z). Lower bounds for
the e{genvalus, E, can also be constructed [3], wvhose quality s
slgnificantly lower: E, - E + order («).

The Green's funucign Monte Carlo (GFMC) method i{s the oldest [6)
method used to solve the Schrodinger equation "exactly" for local
potentials (square, exponential, and gausslan). It is also probably the
least well-known [&,7] {n our zommunity. The twvo primary ingrediente are
the use of imaginary time (t-=-ir) for the bound-state Schrodinger equation,
which rendexs tha exponential time dependence real, and representing the

wavefunction by a set of points (or delta functions) in the nuclecr Hilbert



space. The points are randomly selected. The beauty of this procedure tis
that if the points can be chosen in a physically reasonably way, relatively
few of them are neaded, even to represent a function in a multidimensional
Hilbert space. The time-dependent Schrodinger equation i{s solved by
iteracion, each iteration advancing the (imaginary) time by an amount ar.
In common with most iterative methods, this technique will cornverge to the
lowest eigenstate of the Hamiltonian. This can be seen if we represent the
Schrodinger equation solution by a spectral expansion and take the large r
limit; exp((Eo-H)r)$ - Zn exp(-(En-Eo)r)an¢n - a°¢°. where the ¢n ars the
eigensrates of H with eigenvalues, En, of which Eo {3 the lowest. The
initial discribution y can be any admixture of the ¢n's, but clearly ona'sg
final accuracy depends on the sizs of a in the initial distribution. In
addition, a relacively large quadrature error assoclated with Monte Cario
methods 1s unavoidable.

The hyperspherical harmonic (HH) expansion technique was popularized
in nuclear physics by Simonov and collaborators [8]. It is used in atomic
physics and has been extensively applied in recent years to both the triton
and alpha particle by the Orsay [9] and Kurchatov [10] groups. Unlike many
(but not all) of the variational approaches, this technique is
constructive. That is, the expansion of the wavefunction 1is made in terms
of a complete set, and adding more terms should improva the quality of the
sxpansion. Convergence then requires only that enough terms are used, or
that the {mportant ones can be chosen from the complete set.

The fourth technique which ia used is the Faddeev approach (11-13}.
The seminal work of Faddeev in formulcting a scheme fcr implementing the
boundary conditions for the scatter ng of three particles is alsc an
exceptionally useful (and tractable) technique for solving bound atata
problsms (l4], whather in momentum space, configurstion space, or a mixture
of the two. The original solution for a subset of partial waves of a
“realistic" local potential was achievad by Malfliet and Tjon [13). Sirce
that time the Faddeev method has proven tuv be the most accurate method tor
the tricon, {f not the easiest to implement,

Baaults for Test Potentiala

Much of the testing for these coamputational methods has involved
simple test potentials, most of which are unphysical. In addition, many of
the groups performing these calculations have favorite potentials which are
noc used by the others. Consequently it hus proven very difficult to make
comparisons. The one exception is the spin- and lsorpin-independent
Malfliet-Tjon V (MTV) potantial (3,13]. The triton binding energles, Ep,



Table 1. MTV triton binding energies in MeV.

QALJ.SJ. Rome[3] S.amx.o.Ll.L Qrsayll7] CIMC[]18]
Egt  8.22(2) 8.244 8.2 8.251 8.26(1) 8.251

(in MeV) obtained for this potential by various groups are given in table
1. The first three methods are variational upper bounds, the next two are
a racent hyperspherical result and the GFMC solution, while the last one is
a Los Alamos (-Iowa) Faddeev Group (LAFG) result. Using the wavefunctions
obtained by solving the Faddeev equations, the latter group obtained a
variational upper bound of Eu = -8.253 MeV and a lower bound of -8.484 MeV,
while che Sapporo group found a lower bound of -8.9 MeV. The agreement

between all of ther. calculationa 1s excellent.

Results for Realistic Potentials
Variational results have been obtained for a variety of potentials
with strong tensor forces. Unfortunately, common potentials are rarely
used by two or more groups. The Sapporo [l] and Urbana-Argonne (UA) groups
[19,20] have calculated with the Reid Soft Core V8 model. This model usses
the 1So RSC potential in all singlet-even waves, the 1P1 potential in all

singlet-odd vaves, the 3Sl-3D1 potential in all triplet-even waves, and the

3P2-3F2 potential in all triplet-odd waves. It is constructed so that
there are no L2 or (L §) components; it has only central, tensor, and
spin-orbit components and is local. The UA results are Eu = -6.86(8) MeV
(16]) or -6.92(9) MeV [20] while the Sapporo group finds -7.13 MeV.
Recently at Los Alamos we have solved the 34-channel problem with this
potential, which utilizes all nucleon-nucleon partial waves with total
angular momentum J<4., We find E = -7.56 MeV, which is substantially lower

than both variational results. The VB potentials are so constructed that
3

OI

Faddeav 5-channel potential approximacion. The Sapporo group’'s result for

they are identical in the 18 51-301 partial waves which comprise the

the latter potential is in excellent agreement with the consensus of
Faddeev 5-channel calculations. Thus, the origin of the large disagreement
is something of a mystery. We also note that the difference of .54 MeV
between the 5-channel (positive parity, JS1 NN partial waves) and 34-
channel calculations ias much larger than usual. The UA group (20| have
also calculated with the AV14 potential and find E = -7.16(2) MeV comparaed
to a J4-channel result of -7.68 MeV,

Hyperspherical harmonic methods have been applied to the softar
realistic potentials by the Orsay group {21]. They find -7.13 MeV for the
Super Soft Cors (C) potential, for which J4-channel Faddeev comparison
results [14] exist: -7.33 MeV. Recently the Kurchatov group (22] have



indicated that they have greatly improved the convergence of their HH
results, but no written discussion of these calculations has been
available. This would be very exciting news.

Significans recent progress (7,23] has been made in utilizing the GFMC
method to solve both the triton and alpha particle problems with realistic
potentials. It is typical of epplicatlons of the Monte Carlo method to
quantum mechanical problems that they have severe problems treating
fermions (24]. 1In the most naive sense the Monte Carlo techniques require
a positive (semi-) definite probability distribution from which to sample.
The ground-state wave function for boson systems has such a distribution,
in order to avoid nodal surfaces which increase the kinatic energy. 1In
contradistinction, fermion ground states must have such surfaces in order
to satisfy the Paull principle. This {s less true in few-nucleon systems
because the angular momentum barrier renders the s-waves and the
concomitant tensor-coupled d-waves dominant. Morecvar, in the absence of
spin- and isospin-dependent forces a completaly space-symmetric solution
for the triton and alpha particle results, which also satisfies the
constraints of the Paull principle. The net result is that the physical
few-aucleon ground states are predoninantly space-symmetiic S-states, with
admixtures of mixed symmetry S-,P-, and D-waves. The latter are not
positive definite, but are not dominant.

Until recently, the GFMC method wvas believed not to work wall for
realistic potentials in the triton and alpha particle. The reason is that,
in general, the gircund state of the many-fermion Hamiltonian is pot the
solution which satisfies the Pauli principle and i{s antisymmetric, but
rather a symmetric one which has r. nodal planas that greatly enhance thae
kinetic energy. Convergencs would then tend toward an unphysical state,
It is part of the GFMC methodology to project such solutiuns out of the
(random) diastribution of points which represents the wave function.
However, although they can be eliminated “in the mean", thalr etlect on the
Monte Carlo variance can not Le eliminated and this "noise" eventually
dominates and swamps the signal.

Joe Carlason, a member of our group, has recently succeeded (7] in
applying the GFMC method to the triton and alpha particles for a quasi-
realistic potential which has a strong tensor force. The potential usad
was the Argonne V6 (AV6), and vas chosen for the technical reason that ;t
has no spin.orbit interaction (one simply eliminates the 7-14 components of
the AV14 potential [25]). Converged anavers were obtained without
excessive noise. The triton enexgy result agreaes with the Faddeev
calculations: -7.148 MeV. The alpha particle results are shown in
Figure 1, which is typical of the output of the GFMC procedure. The first
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Figure 1. "Time depandsnce” of the GFMC alpha particle binding energy.

point at r=0 is the variatiénal result and the source of tha starting
distribution for the GFMC procedure. As r increases, the energy rapidly
drops to a flat discributirn modulated by random (statiscical) errors. The
dashed lines indicate 1o for the final (constant) 4istribucion. The time
conscant is less chan 0,023 ~ 1/(40 MeV) which indicates that in the
initial sample there are very energetic components, ‘n' which rapidly
decay. Convergence is somevhat less rapid for the more weakly bound
triton. The (preliminary) result of E = -24.9(2) MeV {s both an "e~act”
snswer and an upper bound, all subject to the statistical errors. The
improvement over the variationsal result is 2 MeV, There is no evidence of
a rapid incrsase in statistical error as r increases, indicating a more
desply bound state. At the moment Carlson is implementing che spin-orbic
interaction in the GIMMC procedure and planec to calculate with the RSC vs
and Argonne va potentials.

We argusd previously that in general there vas a lower energy
eigenstata of the Hamiltonlan which did not satisfy the Paull principle,.
Why is such a state not seen? 1t {s conventionsl to classify two-body
states of ¢ spin- and Lsospin-dependent Hamiltonian accerding to total spin
(9) and Lsospin (T) for a given ~rbital state. Thus the generalized Paull
principle allows S=1 and T=0, as well as $=0 and T=l, for (antisymmetric)
S-waves. If one rslaxes that requiremant, other coambinatione. auch as S=0,
T=0 and S=1, T=1l, are alloved which vould correspond to cumpletely
symaetric states under {ncterchange of all coordinates. For a givea angulasr
aomentum state (L and §) ic {s the isospin wvhich implasments the required

change in symmetry. For example, the dominant tansor-coupled 181-301



parcial waves become T=1l. Moreover, the longest-range (and very important)
force component arises from OPEP. The spin-isospin factor typical of the
latter is 31-32 :1-12, which i{s -3 (attractive) for (S,T) = (0,1) and
(1,0), but is repulsive for symmetric states. It is this feature of
realistic nuclear forces which renders the s-wave components very repulsive
for the symmetric states and consequently there is no bound symmetric
state. This has been verified by a Faddeev calculation for such states
[23]), both with and without a three-nucleon force. The GFMC method offers
great promise for the alpha particle where complete Faddeev-type
calculations are exceptionally difficult.

The Faddeev method has been applied to a wide range of realistic
poteritials, These calculations are traditionally performed by expanding
the nucleon-nucleon force into an infinite number of partial-wave
potentials, each term of which acts only in a single partial wave (e.g.,
1So). Calculations have been performed up to 34 channels (all NN waves
with J g 4), although keeping more channels is quite possible. Variational
calculacions (26] for the additional components with 4 < J < 8 indicate
that only 10 keV is missing from the Faddeev calculations.

Results which have been obtained using 34-channsls are: Reid Soft
Core [27) (RSC) [-7.36 MeV], Argonne [25] V14 (AV14) [-7.68 MeV], Super
Soft Cora [28) (C) [-7.53 MeV], de Tourreil-Rouben-Sprung (29] (B) [-7.57
MaV], Paria [30] [-7.64 MeV] and Bonn [31] ([-8.33 MeV] [32]). All are 34-
channel results {33,34], and with tha oxception of the Bonn result (36,37]
are roughly 1 MeV too low. See also Ref. [35]) and [37]). The preliminary
result from the LAFG for chs Nijmegen potential is -7.77 MeV.

The Bonn potential has 3 significant featurss which presumably play
some role in the incressed binding. One feature of uncertain quantitative
importance is the fact that the configuration spacs version of the most
recent Bonn p.tential, like the Paris and Nijmegen potentials, has
components of the form (32,¢), where B is the relative two-body momentum.
Such terms were neglected in almost all of the older semiphenomenological
potentials, but cthey arise naturally (38] and are in fact required by
special relativicty [39]). The second feature ls the waaker tensor force in
the various Bonn potentials [31] (thers are many such potentials with
disparate forms and ages)., It has been known for several decades that
veakening the tensor force increases the triton binding energy. The reason
is that although the triton binding is very sensitive to the tensor force,
the deutevon is even more so. Consequently, the obvious requirement for
any potential that the deuteron have the correct binding energy leads, upon
veakening the tensor force, to a significantly enhanced central forca,

which is more effective in the triton than the deuteron and thus increases



the triton binding. Typical (but clearly unphysical) potential models
without a tengor force overbind the triton.

The third feature which is salient is the fact that the potentials
which are fitted solely to np scattering data are stronger than those fit
also to pp data. The T=0 partial waves are determined solely by np data,
but charge dependence of the force makes T=1 partial waves differ for the
np and pp (or nn) cases; the s-wave scattering lengths prove this [38].
Consequently the lso potential for the AV14 and Bonn potentials, having
bsen fit to np data, are stronger than those fit to pp data. Recently [40]
we showed that if the tiny lsoquartet (T=3/2) component of the trinucleon
wave function produced by this charge dependence has a negligible effect,
the appropriate T=l NN force for use in the triton (assuming charge
symmetry) is given simply by (2Vnn/3 + VnP/B). Qualictatively this results
from the 3 NN pairs in the triton being roughly 3/2 T«0 pairs and 3/2 T=1
pairs; there is one nn or pp pair (T=l), while each of the np pairs has a
3/4 T=0 (S=1) and 1/4 T=1 (S=0) weighting. Thus the force for the ]ike
particles (nn or pp) comes in with twice the weight of the unlike
particles. The amount by which using Vnp incresses the binding over the
"2/3-1/3 rule® given above is a model-dependent question, but simple
estimates suggest that each "third" of & potential changes the binding
energy by roughly 100 keV. Thus, using the 2/3-1/3 rule could reduce
binding for np-fitted potentials by as much as .2 M4V and increase the
binding for pp-fitted potentlals by .1 HeV.

The weaker tensor force can presumably be put to an experimental test
using NN data. Unfortuntely, the relevant observables which are sensitive

" to the censor force are poorly known, although there has been much recent
experimental work which aims to improve the situation. Many of the details
pertinent to constructing nucleon-nucleon potentials are descided by

theoretical prejudice. Hopefully this question can be resolved soon.

Ixinucleon Obasrvablas

Each of the methods we have described producas a wave function which
can be used to calculate observables, such as the rms charge radii,
asynptotic normalization constants, Coulomb energies, and charge densities.
All of the methods whick have been described calculate these observables
routinely, as well as percentages of various wave function components,
which are not measurable.

In addition to calculations based on two-nucleon potentials alone,
there has been much recent sctivity in the area of chree-nucleon forces.
These forces add additional binding energy, in some cases & large amount.

Consequently, there is s wide range of binding energies for these disparate



models, We will argue below that most of the trinucleon observables are
sensitive to the trinucleon birding energy, EB' and consequently, quoting a
single number for such an observable has little meaning. What is a
meaningful procedure in most circumstances is to plot the values of an
observable for a particular model versus the corresponding binding energy
of that model. Such plots are not new; the Phillips curve (41] for the nd
doublet scattering length and the Tjon line (42] for the alpha particle
binding are well-known examples. There is no guarantee that such a plot
will show a distinct line, or narrow band. However, If such a dependence
on EB alone occurs, we say that "scaling"” holds. This berrows from the

vernacular of electromagnetic interactions, and means that E;, 1s the only

effective variable which 1s required. The physical reasons :or such a
dependence are two-fold. If we restrict ourselves to "realistic”
potentials, we guarantes that the long-range behavior u.f these forces is
virtually identical. In addition, the triton is relatively diffuse like
the deuteron (EB/A < 3 MeV) and this tends to emphasize the reglons of the
wavefunction where the nucleonr. are noninteracting or scarcely interacting.

The paradigm for this behavior is the deuteron, whose asymptotic wave
function is proporticnial to exn(-xr)/r, where n-Ei/z. This form is
completely determined by the binding energy, and illustrates why quoting
observables without correlating them with the corresponding trinucleon
binding energy is of limited value. In what follows below we show results
for observables based only on LAFG calculations, not because others haven't
perforued similar calculations, but because these correlations can be
easily made with our binding energies.

A good example of this scaling [43] 1s the rms charge radius.
Schematic trinucleons are depicted below in Figure 2. The protons are
shaded. If all NN forces were identical we would have the equilateral
configuration in (2a). The rms charge radius is the (mean) distance (RP)
from the trinucleon center-of-mass (CM) to any one of the protons. Because
the pp or nn force is weaker than the np force, the like particles actually
li{e further from the CM than the remainirg urlike particle. Qualitatively,
the angle # in Figure (2b) is greater than 60° and the uvquilateral
configuration (S-state) in (a) becomes isosceles in (b). The deviation of
the isosceles from the equilateral configuration is a measure of the mixed
symmetry S’'-state. The geometry clearly indicates that the charge radius
of He is greater than that of H. This is shown in Figure 3, a "scaling
nlot” of the rms charge radius, <r2>1/2, versus EB for our theoretical data
set. A point Coulomb intersction is includad in the 3He calculations [44].
The data from a Saclay [45) analysis are in good agresment with the simple
fits.
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Figure 2. Schematic trinucleons with coordinates.
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Figure 3. Scaling plot of rms charge radii calculations with fits and
data.

The qualitative behavior can be easily understecod. The mean-squars

radius ls & matrix element which heavlly weights the outer portion of the

wavefunction, which schematically behaves as exp(-xr)/r, with n~(EB)1/2.
Assuaing that tha entire wavefunction has this form and performing tha

quadratures leads to <r2>1/2-E'1/2.
[(2<r2> + ‘:1:2>H)/3]1/2

The igoscalar combination of rms radii

He , does indeed vary in this fashion, wnile the

difference component, which {s largely determined by the S'-state,
B
rapid decreass of the probability of the S'-state, P

The patter behavior can be traced to the

_3'2
s’ "B’
of binding. This trend has a large spread und does not manifest scaling as

decreases more nearly as E

as a function



clearly as the rms radii [43]. Although not specifically included on our
plot, the Bonn result [32] falls on the *H curve.

The pp Coulomb ferce produces two competing effects {44) on the 3He
charge radius. The Coulomb interaction lewers the binding energy and this
increases the radius. In addition the asymptotic form of the wavefunction
is changed from a Hankel function (expcnential) to a Whittaker function,
which falls more rapidly at large separatiors, thus reducing the radius.

The Coulomb energy of 3He has long been know. to be smaller than the
764 keV binding energy difference of He and ?H. The first quantitative
demonstration of this was given by Fabre de la Ripelle [46] and Friar (477,
who derived a simple approximation to the Coulomb energy which allowved
expsrimental electron scattering data to be used to estimate that energy.
The simplest version of that formula can be derived from Figure 2. The
(point-nucleon) Coulomb potential in Figure (2a) is a/x, where a is the
fine structure constant. If tho trinucleons are primarily in an
equilateral configuration, we can replace x by /3z, which in effect
replaces the two-body correlation function by the charge density:

Ec = <g/x> - (a//i)derpch(r)/r. This simple approximation can be extended
to include mixed-symmetry wave function components and the proton’s charge
distribution. It can be demonstratsed [44] to work at the 1% level by
calculating both aides of the relationship. If experimental data are used
for Pep, OD® finds Ec = 638 + 10 keV. A scaling plot of Ec versur EB’
taking account of the proton’s charge distribution, is shown in Figure 4.
It produces Ec ~ 652 keV at EB = 8.48 MaV. The slightly larger number
results from the inability of theoretical wave functiona to reproduce the
inner portion of pch(r). which leads to a small increase in Ec. The
additional 100 keV which is needed fg due to other dir.ct and indirect
charge-symmetry-breaking mechanisms.

Another important set of observables are the asy..ptotic normalization
constants {32,48]. 1If one stretches the triton until a deuteron is outside
the force range of the remaining neutron, the wave function becomes
proportional to an exponential (~exp(-By)), vhere y is the relative
cocrdinate of the two systems and j is the wave number for the deuteron-
triton binding energy difference). The proportionality constant is the
asymptotic normalization. Becauso of the NN tensor force, there aie
actually 2 constants, one for s-wvave (Cs) and one for d-wave (CD), and
their ratio, n = CD/CS' There has been considerable recent interest in
these constants for the analogous deuteron problem [49]. Because the wave
number 4 increases as triton binding increases, the asymprotic wave

function becomes steeper and probability decreasss in the exterior region.
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Figure 4. Scaling plot of *He Loulomb energy.
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Figure 5. Scaling plot of asymptotic D/S ratio, with fits and data.

It becomes easier for the asymptotic wave function to match smoothly onto
the interlor portion if the asymptotic normalization constant increases as
the binding increases. Each constant (Cs. CD and n) increases with energy,
as {llustrated by n in Figure 5. Both "H and *He (with a Coulomb
interaction) are shown together with data.
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